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Abstract

State-of-the-art text-to-image diffusion models (DMs) achieve
remarkable quality, yet their massive parameter scale (8-
11B) poses significant challenges for inferences on resource-
constrained devices. In this paper, we present Hierarchical-
Prune, a novel compression framework grounded in a key
observation: DM blocks exhibit distinct functional hierarchies,
where early blocks establish semantic structures while later
blocks handle texture refinements. HierarchicalPrune syn-
ergistically combines three techniques: (1) Hierarchical Po-
sition Pruning, which identifies and removes less essential
later blocks based on position hierarchy; (2) Positional Weight
Preservation, which systematically protects early model por-
tions that are essential for semantic structural integrity; and
(3) Sensitivity-Guided Distillation, which adjusts knowledge-
transfer intensity based on our discovery of block-wise sen-
sitivity variations. As a result, our framework brings billion-
scale diffusion models into a range more suitable for on-device
inference, while preserving the quality of the output images.
Specifically, combined with INT4 weight quantisation, Hierar-
chicalPrune achieves 77.5-80.4% memory footprint reduction
(e.g., from 15.8 GB to 3.2 GB) and 27.9-38.0% latency reduc-
tion, measured on server and consumer grade GPUs, with the
minimum drop of 2.6% in GenEval score and 7% in HPSv2
score compared to the original model. Finally, our comprehen-
sive user study with 85 participants demonstrates that Hierar-
chicalPrune maintains perceptual quality comparable to the
original model while significantly outperforming prior works.

1 Introduction
Diffusion-based text-to-image (T2I) synthesis (Song et al.
2021; Stability AI 2023; Lipman et al. 2023; Karras et al.
2022; Peebles and Xie 2022; Lu et al. 2024) has emerged as
a powerful tool for a wide variety of applications, such as
the generation of educational content, creative artwork, and
UX/UI design prototyping, intensifying demand for deploy-
able billion-parameter diffusion models (DMs). While recent
advances, such as Stable Diffusion 3.5 (SD3.5) (Esser et al.
2024) and FLUX (Black Forest Labs 2024), significantly
outperform previous generations (SDXL (Podell et al. 2023),
SD1.5 (Rombach et al. 2022), and DALLE-2) in image qual-
ity and text alignment, they also come with excessive model
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Figure 1: HierarchicalPrune achieves 79.5% memory reduc-
tion (left) while maintaining image quality. User study with
85 participants (right) demonstrates minimal quality drop
(4.8-5.3%) with 95% confidence intervals, contrary to the
excessive degradation (11.1-52.2%) of prior methods.

sizes (8-11B parameters) and compute demands, limiting the
accessibility of such advanced models.

At the same time, despite quantitative metrics,
e.g., GenEval (Ghosh, Hajishirzi, and Schmidt 2023)
and DPG-Bench (Hu et al. 2024b), suggesting smaller
models with approx. 2B parameters like SANA-Sprint (Chen
et al. 2025b) perform better than their large-scale coun-
terparts, user-based evaluations on the Artificial Analysis
Leaderboard1 reveal a significant gap in the perceived quality
between compact models and their larger counterparts,
which quantitative metrics fail to capture. As such, there
is a longstanding need for deploying large models even in
resource-constrained settings in order to provide users with
high-quality T2I capabilities.

Nonetheless, this endeavour constitutes a very challeng-
ing task due to the high memory and compute intensity (Li
et al. 2025) of large DMs, thereby often requiring cloud
solutions equipped with high-end GPUs and a minimum
of 80GB VRAM. Concurrently, most of the renowned re-
cent releases of foundational DMs, including SD3.5 (Esser
et al. 2024), FLUX (Black Forest Labs 2024), and See-
dream 3.0 (ByteDance 2025), are built upon multi-modal dif-
fusion Transformer (MMDiT) backbones (Esser et al. 2024)
instead of U-Net, revealing new compression opportunities
(Section 2.1). At the moment, existing efforts to improve
efficiency face important limitations. Firstly, sampling step

1https://artificialanalysis.ai/image/leaderboard/text-to-image



Figure 2: High-resolution image samples generated by compressed model using HierarchicalPrune, showcasing its superior
visual quality across various visual styles, precisely following text prompts, and preserving the ability to draw typography.

reduction (Li et al. 2023; Stability AI 2023; Sauer et al. 2023)
and efficient operator design (Xie et al. 2025; Dao et al. 2022)
are tailored to improving the speed of DMs rather than re-
ducing memory requirements, leaving the important task of
DM deployment in memory-constrained devices unresolved.
Secondly, existing depth-pruning methods (Lee et al. 2024;
Kim et al. 2024a; Fang et al. 2024) show promising results in
both memory and computation reduction (Kim et al. 2024a;
Fang et al. 2024), outperforming width pruning (Fang, Ma,
and Wang 2023; Castells et al. 2024a), but face critical scala-
bility challenges. While they achieve reasonable compression
on U-Net-based small DMs (2.6B or less), they fail to com-
press large-scale, state-of-the-art (SOTA) DMs such as SD3.5
Large (8B) and FLUX (11B) without experiencing significant
degradation at 20-30% memory reduction as demonstrated in
Table 1. The full-block-removal methods employed therein
cannot capture the fine-grained impact of the subcomponents
within each block, and more importantly, the different roles
of blocks in different positions across the network’s hierar-
chy, leading to excessive performance drop at high pruning
ratios. Lastly, orthogonal to pruning, reduced-precision com-
putation (He et al. 2023; Li et al. 2025; Wang et al. 2024)
has been proven effective, but it has not been combined with
prior block-removal DM compression methods.

By observing the limitations of prior work, this paper iden-
tifies a novel insight for DMs that consist of MMDiT blocks:
Such DMs form a two-fold hierarchy, spanning the inter- and
intra-block levels. Inter-block hierarchy reflects the contri-
bution of different blocks to disparate aspects of the output
image (e.g. semantic structure, finer visual details), which is
determined by their position in the overall architecture. Intra-

block hierarchy highlights the subcomponents that compose
each MMDiT block and their diverse patterns of importance
to the overall quality.

Building on this new viewpoint, we propose Hierar-
chicalPrune, a principled compression methodology that
overcomes the limitations of existing methods using three
hierarchy-informed techniques (Fig. 3). First, we introduce
Hierarchical Position Pruning (HPP), a method that lever-
ages our empirical insight that later MMDiT blocks con-
tribute less to fundamental image structure, by strategically
maintaining early blocks that form core image structures
while pruning later blocks that primarily handle refinements.
Second, we incorporate Positional Weight Preservation
(PWP), which freezes the non-pruned and earlier portions of
the model during the distillation process. This approach main-
tains the integrity of early blocks, which are essential for im-
age formation, while allowing later, less critical blocks to be
updated. Finally, we propose Sensitivity-Guided Distillation
(SGDistill), which operates with a counterintuitive yet effec-
tive principle: blocks with higher importance are also more
sensitive to change. Our analysis reveals that in aggressive
pruning settings, attempting to update these highly impor-
tant blocks often proves detrimental to model performance.
As such, we enforce inverse distillation weights—assigning
minimal or zero update weights to the most important blocks,
while concentrating updates on less sensitive components.

We extensively benchmark HierarchicalPrune on both
server and desktop-grade GPUs, demonstrating superior re-
sults over SOTA methods. Our contributions include:

• We identify a dual hierarchical structure in MMDiT DMs:
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Figure 3: HierarchicalPrune’s compression framework lever-
ages MMDiT’s two-fold hierarchy (inter-block: early blocks
establish semantics, later blocks refine; intra-block: vary-
ing subcomponent importance). It comprises (1) Hierar-
chical Position Pruning (HPP), maintaining early blocks
while pruning later ones, (2) Positional Weight Preserva-
tion (PWP), freezing critical early blocks during distillation,
and (3) Sensitivity-Guided Distillation (SGDistill), applying
inverse weights—minimal updates to sensitive blocks and
subcomponents. The resulting framework enables effective
compression while preserving model capabilities.

an inter-block hierarchy (earlier blocks establish seman-
tics, later blocks handle refinements) and an intra-block
hierarchy (varying importance patterns of subcomponents
within each MMDiT block).

• HierarchicalPrune establishes a comprehensive, position-
aware pruning and distillation framework for large-scale
DMs, for the first time, by combining HPP, PWP, and
SGDistill with INT4 quantisation that achieves 77.5-
80.4% memory reduction with minimal quality loss (3.2-
4.8% ours vs. 15.3-41.2% degradation for prior works).

• An extensive user study with 85 participants demonstrates
that HierarchicalPrune significantly outperforms all the
baselines (Fig. 1): KOALA and BK-SDM suffer from
a substantial 44.0-52.2% user-perceived quality degra-
dation, and the SOTA small-scale DM, namely SANA-
Sprint-1.6B, shows a 11.1-14.2% drop. In contrast, Hier-
archicalPrune observes a mere 4.8-5.3% degradation.

2 Methodology
2.1 Motivation
Examining MMDiT-based DMs, we identify a two-fold hier-
archy: i) inter-block and ii) intra-block hierarchy. Inter-block
hierarchy refers to the organisation of blocks along the overall
architecture and implies a functional hierarchy where blocks
have different responsibilities based on their position. Intra-
block hierarchy focuses on the fact that individual blocks are
internally composed of subcomponents, which in the case of

MMDiT consist of Norm, Context Norm, Attention, MLP,
and Context MLP modules (Esser et al. 2024), with each sub-
component having a varying impact on performance based
on its type and position.

Given this dual hierarchy, we conjectured that each block
is responsible for different aspects of the generated images
and that its position in the DM architecture largely deter-
mines these aspects. This also holds for subcomponents and
is affected by their type. Concretely, we hypothesised that the
contribution of different blocks to the output image is not uni-
form, regarding importance to performance and influence on
specific image traits (e.g., structure, texture or finer details).

To investigate this, we conducted a contribution analysis on
SD3.5 Large Turbo over the HPSv2 dataset (Wu et al. 2023b),
by removing both individual MMDiT blocks (Fig. 4a) and
subcomponents (Fig. 4b, 4c and Fig. 8b–8e in Appendix B),
and comparing the performance before and after. We observe
that each of the subcomponents, as well as whole-block re-
moval, demonstrates different patterns of impact at different
locations. This was further highlighted when analysing the
joint removal of multiple subcomponent types, where dif-
ferent subcomponent combinations exhibited significantly
different effects on the final performance (see Appendix B).

We further observe that the performance drop is typically
more severe in earlier stages of the network. Given the inter-
block hierarchy hypothesis, we attribute this to earlier blocks
contributing more to core elements of the output image that
affect its quality, such as semantic structure, whereas later
blocks are more important for finer visual details. To verify
this, we examined the generated images when removing a
number of MMDiT blocks at different locations throughout
the network. Specifically, we randomly selected a few exam-
ples from the HPSv2 dataset and performed T2I generation
with SD3.5 Large Turbo, removing three non-consecutive
blocks each time. Fig. 5 shows that the overall image structure
changes dramatically when layers are removed before and up
to layer 10, while after layer 30, removal of the same number
of blocks has minimal impact on the structure, while finer
details, such as style, are still affected, providing evidence
for the inter-block hierarchy of MMDiT DMs.

Despite this variability, existing full-block removal meth-
ods (Lee et al. 2024; Kim et al. 2024a) treat MMDiT blocks
homogeneously, compromising performance when targeting
high compression ratios. Our observations reveal a critical
shortcoming: by ignoring the inter-block differences, these
methods inadvertently prune blocks that are disproportion-
ately important to visual quality while retaining less impact-
ful ones. Moreover, by coarsely removing whole blocks, ex-
isting methods not only discard redundant layers but also
eliminate subcomponents that might be essential for captur-
ing fine-grain features. As shown in Section 3.2, this lack of
differentiation leads to a steep drop in model performance
under aggressive pruning rates. These insights motivate us
to design hierarchy-informed techniques for the effective
compression of large MMDiT-based DMs.

2.2 HierarchicalPrune
Motivated by our findings in Section 2.1, we propose Hier-
archicalPrune (Fig. 3), a cohesive, multi-stage pruning and
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Figure 4: Fine-grained contribution analysis of SD3.5 Large Turbo on the HPSv2 dataset by removing either an entire MMDiT
block (a), following prior depth pruning approaches (Lee et al. 2024; Kim et al. 2024a; Fang et al. 2024), or an intra-block
subcomponent (b, c and see Fig. 8 in Appendix B for full set of analysis). We report the performance drop compared to the
original model. The discrepancy in performance drop patterns reveals the different patterns of importance of each subcomponent.

[1, 3, 5] [5, 7, 9] [10, 12, 14] [30, 32, 34] [35, 36, 37] Original

(a) (b) (c) (d) (e) (f)

Figure 5: Impact of removing MMDiT blocks at different
positions. Compared to original outputs (f), removing earlier
layers leads to high impact on image structure (a-c), whereas
removing later blocks affects mainly fine details (d, e).

distillation approach that respects the hierarchical nature of
DMs. HierarchicalPrune introduces three key techniques:
i) Hierarchical Position Pruning (HPP), ii) Positional Weight
Preservation (PWP), and iii) Sensitivity-Guided Distillation
(SGDistill). These techniques operate complementarily with
the objective to maximise the model compression rate while
maintaining output quality throughout the T2I process. Al-
gorithm 1 presents the complete methodology. Given a pre-
trained model m, the first stage (line 1) is responsible for
producing a pruned model mpruned with a compression ratio
r using HPP.

In the second stage (lines 2-5), HierarchicalPrune first pre-
pares the pruned model for distillation, by preserving its most
sensitive blocks by means of PWP (line 2), yielding the se-
lectively frozen model mpruned,frz. Then, distillation is applied
in order to improve the attainable image quality. Specifically,
if the target compression ratio r indicates aggressive com-
pression by surpassing a threshold rthres, HierarchicalPrune
applies SGDistill (line 3), our proposed sensitivity-guided
distillation method. For moderate compression, a simpler
distillation process is followed (line 5). As a final step, the re-
sulting model is optionally quantised with 4-bit weights and
16-bit activations (line 6) to obtain additional compression.

Hierarchical Position Pruning: At its foundation, Hier-
archical Position Pruning (HPP) leverages our insight that
deeper MMDiT blocks contribute less to core visual structure.

Algorithm 1: HierarchicalPrune
Input: DM m with |B|MMDiT blocks and parameters θ

Subcomponent set C of each MMDiT block
Quality threshold q, Compression ratio r
Dataset D and calibration set Dcalib ⊂ D

Output: Pruned and distilled DM m′ with parameters θ′

/* - - - Stage 1 - HPP / PWP - - - */
1 ∆P (i, c)← ContributionAnalysis(m,Dcalib, i, c),
∀i ∈ [0, |B| − 1],∀c ∈ C

▷ Estimate importance based on performance drop
Score(i, c)← PrunabilityScore(∆P, i, c)
∀i ∈ [0, |B| − 1],∀c ∈ C

▷ Calculate prunability as per Eq. (1) and (2)
mpruned,θpruned ← ApplyHPP(m,θ, Score, r)
▷ Given the prunability per block, remove blocks until compression ratio

/* - - - Stage 2 - Distillation - - - */
2 mpruned,frz,θpruned,frz ← ApplyPWP(mpruned,θpruned)

▷ Freeze the non-pruned and earlier parts of the model
if r ≥ rthres then

3 m′,θ′ ← SGDistill(m′
pruned,frz,θ

′
pruned,frz,D, q)

▷ If aggressive pruning, use sensitivity-guided distillation

4 else
5 m′,θ′ ← Distill(m′

pruned,frz,θ
′
pruned,frz,D, q)

▷ If moderate pruning, use normal distillation

/* - - - Stage 3 - Post-Training Quantisation - - - */
6 m′,θ′ ← PTQ(m′,θ′, precision=W4A16)

▷ Apply PTQ for further compression

7 return m′, θ′

As such, HPP strategically targets blocks for removal based
on their hierarchical position within the model, maintaining
early blocks that form image structures while pruning deeper
blocks that mainly handle visual details.

Formally, for a DM with |B| MMDiT blocks, we first in-
troduce a position weight function Wpos(i) (Eq. (2)) that cap-
tures the inter-block hierarchy by mapping the more critical
earlier blocks to lower values and guiding the pruning pro-
cess towards the later layers. Next, we calculate a prunability
score Score (Eq. (1)) for each block in B and subcompo-
nent(s), consisting of the performance drop from the original



model scaled by the position weight function. Concretely:

Score(i, c) = −|∆P (i, c)|×Wpos(i) ∀i ∈ [0, |B|−1] (1)

Wpos(i) = e(i−|B|)/|B| (2)
where i is the block index and B is the number of blocks,
c ∈ C is the subcomponent type, ∆P (i, c) is the importance
score quantified as performance drop from the original model
when block i and/or subcomponents c are removed, Wpos(i)
is the position weight function that favours later layers.

Positional Weight Preservation: Building upon this
position-aware foundation, we incorporate Positional Weight
Preservation (PWP), which freezes the non-pruned and ear-
lier portions of the model during the distillation process. This
straightforward yet effective approach maintains the integrity
of early blocks which are essential for image formation, while
allowing later, less critical blocks to be updated. By system-
atically keeping weights static based on their position in the
network, PWP significantly outperforms basic position-based
pruning, HPP, for moderate pruning scenarios (e.g., 25% pa-
rameter reduction), as it ensures that the most structurally
important parts of the model remain intact. Note that even at
moderate compression levels, prior methods suffer substan-
tial quality degradation (15.3-41.2% in Table 1), while our
approach maintains near-original performance.

Sensitivity-Guided Distillation: For aggressive parameter
reduction (e.g., ≥30%), however, we discovered that even
with careful pruning and preservation, excessive block-level
pruning leads to unacceptable quality degradation. To address
this challenge, we introduce Sensitivity-Guided Distillation
(SGDistill), which operates with a counterintuitive yet effec-
tive principle: blocks with higher importance are also more
sensitive to change.

Our analysis reveals that in aggressive pruning settings, at-
tempting to update these highly important blocks often proves
detrimental to model performance (showing 31.9% average
quality reduction even with PWP, see Table 3). Consequently,
SGDistill applies inverse distillation weights—assigning min-
imal or zero update weights to the most important blocks,
while concentrating updates on less sensitive components.
This approach, combined with subcomponent (e.g., Normal-
isation and MLP within an MMDiT block) pruning for the
remaining portion of the DM after pruning up to rthres (line 2)
with HPP and PWP, extends our hierarchical approach from
the block-level to the intra-block subcomponents, preserving
the carefully tuned parameters of critical blocks while allow-
ing adaptation in less sensitive regions. Our experimental
results confirm this hypothesis, showing that protecting sensi-
tive blocks from significant updates during distillation is key
to maintaining quality at high compression ratios, reducing
average quality degradation from 31.9% to 10.1% (Table 3).

Concretely, the objective of the distillation process of Hi-
erarchicalPrune leverages a combination of the feature loss,
Lfeat, i.e., a feature distillation loss, and the standard knowl-
edge distillation (KD) loss to minimise the difference be-
tween the final output of the compressed (i.e., student) model
θ′ and the original (i.e., teacher) model θ, leading to the
overall loss L = Lfeat + LKD, with LKD expressed as:

LKD = E
[
||vθ′(xt, t)− vθ(xt, t)||2

]
(3)

where t is the time step, and xt is the noisy diffusion sam-
ple, started from the clean latent x0 from the autoencoder
(VAE). For the selected set of blocks to update B∗ ∈ B each
associated with an importance score ∆P (i, c) (Eq. (1)), by
denoting feature output of block i in teacher and student
models as f l

θ and f l′

θ′ , respectively, we have:

Lfeat = E

 ∑
i∈[0,|B∗|−1]

||fi′
θ′ (xt, t) − f

i
θ(xt, t)||2

 (4)

SGDistill specifies that, for each block, we scale the final
parameter update by its sensitivity, i.e., 1

∆P (i,c) , regulating in
this way the rate of change of each block during distillation.

3 Evaluation
To evaluate HierarchicalPrune against existing methods, we
conducted both quantitative and qualitative comparisons (Sec-
tion 3.2). We also perform an ablation study to assess each
proposed component, the impact of quantisation, and the
robustness of text-drawing capability (Section 3.3).

3.1 Experimental Setup
Architectures, Datasets, and Implementation: We target
SD3.5 Large Turbo (8B) and FLUX.1-Schnell (12B), two
SOTA models designed to perform diffusion tasks within a
small number of steps (e.g., 4). Following prior work (Lee
et al. 2024), we use the YE-POP dataset (HuggingFace
2024) consisting of 500K images. We implemented the Hi-
erarchicalPrune pipeline in PyTorch and Diffusers (von
Platen et al. 2022), utilising SD3.5 Large Turbo and FLUX.1-
Schnell model checkpoints. For 4-bit weight quantisation, we
adopt bitsandbytes (Dettmers et al. 2022).

Baselines: We compare HierarchicalPrune with two
prior works related to depth pruning and distillation:
i) KOALA (Lee et al. 2024), and ii) BK-SDM (Kim et al.
2024a). BK-SDM proposed block pruning of U-Net-based
models using the CLIP score (Hessel et al. 2021), followed
by distilling the pruned model using knowledge from the
original model. KOALA follows a similar method, replac-
ing CLIP-score-based importance ranking with scores from
each block’s input-output cosine similarity. Also, we com-
pare against SANA-Sprint-1.6B (Chen et al. 2025b), a SOTA
compact model optimised for efficient on-device deployment.

Metrics: To quantitatively evaluate all methods, we em-
ploy the two most recent and representative image quality
metrics, GenEval (Ghosh, Hajishirzi, and Schmidt 2023)
(used in (Xie et al. 2025; Esser et al. 2024)) and HPSv2 (Wu
et al. 2023a) (used in KOALA (Lee et al. 2024)). Further-
more, we conduct a user study to assess human preferences
for the generated images that are difficult to capture with the
quantitative quality metrics. Similar to (Sheynin et al. 2023)
and (Dai et al. 2023), we evaluate two aspects: (i) Text Align-
ment: How well a generated image follows the description of
the text prompt, (ii) Image Quality: The overall visual quality
considering clarity, colour, composition, and other factors.
On the system resource side, we report the measured peak
memory usage and latency of running the target models on
diverse GPUs, including A6000 (Table 2), GTX 3090 and
A100 GPUs (see Appendix Table 5).



Original Model Compression Methods Non-Compression
SD3.5 Large Turbo BK-SDM KOALA HierarchicalPrune (Ours) SANA-Sprint-1.6B

"A painting of a Persian cat dressed as a Renaissance king, standing on a skyscraper overlooking a city."

"A kangaroo in an orange hoodie and blue sunglasses stands on the grass in front of the Sydney Opera House

Figure 6: Visual comparison demonstrating the quality difference between the original model (column 1), depth pruning based
on BK-SDM (column 2), KOALA (column 3), and our proposed HierarchicalPrune (column 4), as well as the SOTA small-scale
diffusion model, SANA-Sprint-1.6B (column 5). Our approach successfully maintains visual quality while delivering 79.5%
memory reduction over the original model. Notably, our method preserves the text drawing capability of the original SD3.5
Large Turbo model, where SANA-Sprint-1.6B is limited.

3.2 Main Results
Image Quality under Memory Compression: Fig. 6
presents a qualitative comparison of example outputs. Hi-
erarchicalPrune shows better visual outputs, outperforming
all the baselines, and maintaining high fidelity to the original
DMs, both in structure and fine details. More examples can
be found in Fig. 2 and Appendix C. Table 1 shows that Hi-
erarchicalPrune achieves comparable quality to the original
model based on both HPSv2 and GenEval. While baselines
induce substantial quality degradation of 38.2-45.1%, our
approach yields only a minimal drop (∼3.2-4.8%), given the
same range of memory compression ratio, showcasing the
effectiveness of our hierarchical compression strategy.

Importantly, HierarchicalPrune achieves 79.5% lower
peak memory, a reduction from 15.8 GB to 3.24 GB for
SD3.5 Large Turbo model. Notably, the peak memory of our
compressed SD3.5 model (3.24 GB) is comparable to SANA-
Sprint (3.14 GB), but with substantially better image quality.
For FLUX.1-Schnell, our method achieves 80.4% peak mem-
ory reduction, indicating its generalisability to larger DMs.

User Study: Our user study with 85 participants reaffirms
the effectiveness of HierarchicalPrune. Fig. 1 presents the
mean opinion score (MOS) across all methods. Hierarchical-
Prune achieves remarkably close MoS to the original SD3.5
Large Turbo model with only minimal reduction (4.8% for
text alignment, 5.3% for image quality). In contrast, SANA-
Sprint-1.6B shows a noticeable quality drop (14.2% for text
alignment, 11.1% for image quality) compared to the original
model, while other baselines (i.e., BK-SDM, KOALA) show
a substantial 44.0-52.2% degradation.

Model Method Memory (%) GenEval ⇑ HPSv2 ⇑ Reduction ⇓
Linear DiT SANA-Sprint 3.14 GB (100%) 0.77 29.61 -

Original 15.8 GB (100%) 0.71 30.29 -

KOALA 12.6 GB (79.4%) 0.37 19.99 41.2%
KOALA (+Quant) 3.56 GB (22.5%) 0.33 18.44 46.4%

SD3.5 BK-SDM 12.6 GB (79.4%) 0.38 21.21 38.2%
Large Turbo BK-SDM (+Quant) 3.56 GB (22.5%) 0.34 19.83 43.3%

Ours (HPP+PWP+Q) 3.56 GB (22.5%) 0.69 28.15 4.8%
Ours (All) 3.24 GB (20.5%) 0.62 26.29 13.3%

Original 22.6 GB (100%) 0.66 29.71 -

FLUX.1 KOALA 15.9 GB (70.5%) 0.38 25.24 28.7%
Schnell BK-SDM 15.9 GB (70.5%) 0.45 27.38 19.8%

Ours (All) 4.44 GB (19.6%) 0.64 28.69 3.2%

Table 1: Image quality measured in GenEval and HPSv2
scores and the corresponding peak memory measurements
in GB and remaining ratios (%) after compression. KOALA
and BK-SDM experience substantial degradation of image
quality when reducing memory usage by 20-30%. Hierarchi-
calPrune achieves significantly reduced memory usage while
maintaining the image quality close to the original models.

Training Cost Comparison: Beyond quality preservation,
HierarchicalPrune requires only 615–1,287 A100 GPU hours
for architectural profiling and distillation (Appendix C.1),
compared to 140k–200k A100 GPU hours required to pre-
train small-scale DMs like SD1.4 and SD2.1 (Pernias et al.
2024). This demonstrates that compressing existing large
models is far more cost-efficient than training compact alter-
natives from scratch, while maintaining superior quality.

Latency: We measure per-step latency of Hierarchical-
Prune and baselines both server- and desktop-grade GPUs
with different specifications (A100, A6000, and GTX 3090
with 80, 48, and 25 GB VRAM, respectively, reported in



Model Method Latency ⇓ Reduction ⇑
Linear DiT SANA-Sprint 54 ms -

Original 823 ms -

KOALA 642 ms 22.0%
SD3.5 BK-SDM 642 ms 22.0%

Large Turbo Ours (HPP, PWP, Quant) 593 ms 27.9%Ours (All)

Original 756 ms -

FLUX.1 KOALA 432 ms 42.9%
Schnell BK-SDM 432 ms 42.9%

Ours (All) 469 ms 38.0%

Table 2: Comparison of per-step latency of the DM Trans-
former measured on an A6000 GPU with 48 GB of VRAM.

Appendix Table 5). While we report the measurement re-
sults from A6000 in Table 2, the reduction rates are similar
across GPUs. Our compression pipeline achieves 27.9% and
38.0% latency reduction compared to the original SD3.5
Large Turbo and FLUX.1-Schnell, respectively.

Overall, our findings reveal that respecting the hierarchi-
cal sensitivity of diffusion model components enables more
effective model compression than approaches that treat all
blocks as equally important, establishing a new paradigm for
the efficient deployment of large-scale generative models.

3.3 Ablation Study and Analysis
Impact of Each Component of HierarchicalPrune: We
conducted an ablation study of HierarchicalPrune to in-
vestigate the contribution of each component: (1) HPP,
(2) PWP, (3) HPP+PWP+SGDistill, and (4) our final form,
HPP+PWP+SGDistill+Quant. Table 3 shows that using
HPP+PWP drastically improves image quality compared to
HPP only and prior works (i.e., BK-SDM, KOALA). More-
over, by leveraging intra-block sensitivity, SGDistill substan-
tially reduces image quality degradation from 31.0% to 10.1%
compared to HPP+PWP at an aggressive paramter reduction
rate of 30%2. Our method outperforms all baselines with
superior image quality, lower memory, and faster execution.

Impact of Quantisation: We investigate how much
W4A16 quantisation in our pipeline affects the final image
quality. Table 3 shows the quality metrics with and without
quantisation applied. The impact of quantisation is as small
as 2.4-3.5% in both GenEval and HPSv2 scores.

Robustness of Text Generation: As shown in Fig. 6, prior
works (BK-SDM and KOALA in pruning) and small-scale
DMs (SANA-Sprint-1.6B) are limited in synthesising legible
texts in the generated images. However, HierarchicalPrune
demonstrates the superior quality in text generation in Fig. 6
and 2. These results represent the effectiveness of our pro-
posed method in preserving the innate capability of the origi-
nal model, not only in the aesthetic quality but also in other
aspects like text generation.

4 Related Work
T2I Diffusion Models. Since Stable Diffusion (SD) (Rom-
bach et al. 2022), there has been rapid community adoption

2We set rthres = 0.25 for both models, determined where qual-
ity degradation exceeded 15% without SGDistill.

Prunning
Ratio Method Remaining

Memory (%) GenEval ⇑ HPSv2 ⇑ Reduction ⇓

None (0%) Original 100% 0.71 30.29 -

Moderate
Pruning
(20%)

Ours (HPP) 79.4% 0.03 11.08 79.4%
Ours (+PWP) 79.4% 0.71 28.97 2.5%
Ours (+Quant) 22.5% 0.69 28.15 4.8%

Aggressive
Pruning
(30%)

Ours (HPP) 71.5% 0.0 7.00 88.4%
Ours (+PWP) 71.5% 0.46 21.74 31.9%
Ours (+SGDistill) 71.5% 0.64 27.29 10.1%
Ours (+Quant) 20.5% 0.62 26.29 13.3%

Table 3: Ablation study of each component and quantisation
in HierarchicalPrune on SD3.5 Large Turbo.

and iterative updates in the field. SDv1.4 and v1.5 were
released in 2022, enhancing efficiency and enabling spe-
cialised fine-tuning (e.g., DreamBooth). By mid-2023, Sta-
ble Diffusion XL (SDXL) significantly advanced resolution
(1024×1024), text comprehension, and image quality. By
the end of 2024, the adoption of MMDiT (Esser et al. 2024)
as a backbone in SD3, SD3.5, and FLUX brought a signifi-
cant boost in image generation quality and alignment with
long text input. At the same time, the increasing parameter
count, particularly in the backbone Transformer blocks, sig-
nificantly improved image quality but with excessive resource
demands. As SOTA models like SD3.5 scale up to as many
as 8B parameters, efficient inference on resource-constrained
devices becomes impractical. This underlines the significance
of approaches such as our HierarchicalPrune framework, to
enable DM deployment outside of high-end compute setups.

Compression Techniques. Traditional model compression
methods, including distillation (Hinton, Vinyals, and Dean
2015), pruning (Han, Mao, and Dally 2016) (such as depth
pruning via block removal (Ghiasi, Lin, and Le 2018; Kim
et al. 2024c), width pruning (Kwon et al. 2024)), and quan-
tisation (Jacob et al. 2018) have been applied to DMs (Lee
et al. 2024; Kim et al. 2024a; Castells et al. 2024b; Hu et al.
2024a; Fang et al. 2024; Li et al. 2025; Kim et al. 2024b;
Zhang et al. 2024), resulting in variable parameter efficiency
gains. Specifically, (Kim et al. 2024a) and (Lee et al. 2024)
explore block removal in the U-Net backbone of SD1.5 and
SDXL models, respectively. More recently, (Li et al. 2025)
explored the effectiveness of quantisation on DMs for mem-
ory reduction, hence our HierarchicalPrune employs adjunct
post-training quantisation as part of its design. Orthogonal to
compression, ∆-DiT (Chen et al. 2024) identifies hierarchical
patterns in DiT (MMDiT predecessor) for inference caching.
Our analysis confirms that this generalises to modern MMDiT
and further leverages these insights for the compression of
SOTA multi-billion-scale DMs, under a unified framework.

5 Conclusion
In this work, we proposed HierarchicalPrune, pushing the
limit of compressing MMDiT-based large-scale DMs through
hierarchical insights. By combining HPP, PWP, and SGDistil
with quantisation, HierarchicalPrune achieves 77.5-80.4%
memory reduction and 27.9-38.0% latency improvements
with minimal quality loss, bringing SOTA large-scale DMs
(SD3.5 Large Turbo, FLUX.1-Schnell) within reach of
resource-constrained environments and democratising access
to high-quality T2I generation.
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Supplementary Material
HierarchicalPrune: Position-Aware Compression for Large-Scale Diffusion Models

A Detailed Experimental Setup
A.1 Datasets
We use the YE-POP dataset from HuggingFace for distillation training of the target models, similar to prior work by (Lee et al.
2024). The YE-POP dataset is comprised of 500,000 high-quality images sampled from the LAION-5B dataset (Schuhmann
et al. 2022), incorporating a variety of visual modalities across multiple disciplines, including images of natural scenes, objects,
people, and artistic images, providing extensive breadth for the training and evaluation of diffusion models (DMs). Our dataset
preprocessing pipeline includes standard normalisation processes and low-resolution image and damage filtering, and ensures
consistent image resolutions and aspect ratios to provide a fair data comparison for our model configurations and baseline
methods.

A.2 Architectures and Implementation
Target Models: We examine the two most recent DMs: SD3.5 Large Turbo (8B parameters) and FLUX.1-Schnell (12B). Both
models are state-of-the-art (SOTA) for few-step, diffusion-based T2I generation, producing high-quality high-resolution images
in an average of 4 steps.
HierarchicalPrune Hyperparameters: The pruning process is configured through hyperparameters tuned for the target
architecture. For SD3.5 Large Turbo and FLUX.1-Schnell, we set α to 0.55 and 0.01, respectively. Hyperparameter α in Eq. (2)
controls the strength of positional importance weighting within the network. Higher values of α emphasise positional weighting
more strongly, prioritising the removal of components based on their network position, while lower α values reduce this positional
weighting, allowing importance scores to be determined based more on component-specific contributions rather than architectural
location.
Implementation: The HierarchicalPrune pipeline is implemented in PyTorch. In particular, we built on top of checkpoints and
inference pipelines for SD3.5 Large Turbo and FLUX.1-Schnell from the Diffusers library (von Platen et al. 2022). This
allows us both consistency with pre- and post-processing steps, and also reproducible experiments. The distillation training
process is conducted on a single node of 8 A100 GPUs with 80 GB of VRAM.
Quantization Strategy: To further reduce the memory footprint of the models, we employed 4-bit weight quantization from
using bitsandbytes (Dettmers et al. 2022, 2023).
Open-Sourcing: We plan to release our trained checkpoints, distillation and inference pipelines upon acceptance of the paper to
assist the community to reproduce our work as well as to further advance this line of research.

A.3 Baseline Comparisons
We compare HierarchicalPrune with (1) BK-SDM and (2) KOALA, two prior works, employing depth pruning and knowledge
distillation, and (3) SANA-Sprint-1.6B, the SOTA small-scale DM.
BK-SDM (Kim et al. 2024a): BK-SDM performs block pruning for U-Net-based diffusion using CLIP (Hessel et al. 2021)
scores as importance metric, where it ranks blocks based on the reduction of CLIP scores of the output images from the model
before and after pruning each block. After pruning, BK-SDM distils the compressed model using knowledge from the original
unpruned model, to recover performance from the previous steps.
KOALA (Lee et al. 2024): KOALA uses an importance ranking approach by calculating input-output cosine similarity to inform
the block pruning strategy for U-Net based DMs. The blocks of the transformer have intrinsic importance relative to input-output
transformations by evaluating the cosine similarity between input and output representations/features rather than utilising an
external quality metric of transformation.
SANA-Sprint-1.6B (Chen et al. 2025b): We use SANA-Sprint-1.6B as the state-of-the-art (SOTA) baseline for an efficient,
small-scale diffusion purpose-built model, incorporating techniques such as deep-compression auto-encoder (Chen et al. 2025a)
and linear attention (Katharopoulos et al. 2020). Intrinsically, SANA models require training of the transformer from scratch,
which departs from compressing existing models.



All comparisons to the baselines and SANA-Sprint-1.6B are made with identical experimental protocols. We ensure all
methods use the same prompt sets, generation parameters, and hardware to isolate confounded variables and allow performance
attribution of each approach to the specific methodologies.

A.4 Evaluation Framework
Quantitative Metrics: We adopt two representative and complementary image quality assessment metrics, capturing two
different aspects of the quality of generation. First, GenEval (Ghosh, Hajishirzi, and Schmidt 2023) provides an all-encompassing
evaluation across three areas, i.e., semantic fidelity, visual fidelity, and prompt adherence. GenEval is now widely used for
evaluations of T2I models (Xie et al. 2025; Esser et al. 2024). Second, HPSv2 (Wu et al. 2023a) provides a contrasting perspective
on image quality assessment, with demonstrated effectiveness in estimating the perceptual preferences of humans about image
quality. HPSv2 has been utilised in several recent works such as KOALA (Lee et al. 2024).
Human Preference Metrics: We conduct a user study to assess human preferences for the generated images that are difficult to
capture with the quantitative quality metrics (see Appendix A.5 for further details regarding our user study design). Similarly
to (Sheynin et al. 2023) and (Dai et al. 2023), we evaluate two aspects: (1) Text Alignment: How well a generated image follows
the description of the text prompt, (2) Image Quality: The overall visual quality considering clarity, colour, composition, and
other factors.
Hardware Testing Environment: On the system resource side, we report the measured peak memory usage and latency of
running the target models on GPUs. Our evaluation was conducted across three different GPUs, representing deployment
scenarios on cloud (A100 with 80GB), high-end consumer (A6000 with 48GB), and resource-constrained low-end GPUs (GTX
3090 with 24GB).

A.5 Detailed User Study Design
Acknowledging the inconsistency of automated metrics, especially in discerning fine aspects of image quality and preferences
for aesthetics, we choose to conduct a full user study of methods following the protocol of (Sheynin et al. 2023) and (Dai et al.
2023). In our user evaluation method, we are focused on measuring two aspects of user experience:

• Text Alignment: Evaluators measure the extent to which the generated images reflected correctly the content item or detail
in the input text prompts. Within this measure, evaluators take into account whether the required object appeared and its
spatial relationship with other objects, about detail examined before the invocation of the process, and attributes/stylistic
characteristics specified in the prompts.

• Image Quality: We ask the evaluator to judge the quality on a multi-factor basis, e.g., clarity of image, colour accuracy and
vibrancy, balance of composition (or lack thereof), uniformity of lighting, preservation of texture detail, and the absence of
artefacts or distortion.

Experimental Protocol and Interface Design: Based on these evaluation criteria, we designed an online questionnaire that
rigorously collects systematic and unbiased data. Figure 7 shows the user study interface, which provides a consistent and
structured layout and enables a progressive evaluation workflow.

First (see bottom-left figure), participants were shown six images generated by six different methods using the same text
prompt (displayed in grid format with adequate visual separation) and required to select the single best image based on their
holistic review of the image quality. This can create an overall perceived quality ranking among the evaluated generation methods.
Second (see bottom-right figure), participants rated images individually based on two aspects of user experience as discussed
above using structured rating scales. Specifically, each image was rated in isolation, on both the Text Alignment and Image
Quality dimensions using a 6-point Likert scale (0-5). Zero = Poor performance, and 5 = Excellent performance.
Randomisation Strategy and Bias Mitigation: Randomisation is necessary for the performance differences to be based on the
quality of the generated images, not due to positional bias, order, or pattern recognised by the evaluator. Therefore, to mitigate
bias and avoid participants discovering patterns in how we generated the order of images, we randomly ordered the presentation
of images across all evaluation sessions. Specifically, each participant would see the images in different random sequences, and
there were no fixed positional relationships between methods across prompt sets. Randomisation occurred in the image grid as
well as the rating phases, thus maintaining the fair assessment of generated image quality across different methods.
Quality Control: To ensure that our assessment criteria are interpreted in the same way, participants receive introduction
materials before starting the formal evaluation. These materials have detailed descriptions of both the Text Alignment and Image
Quality dimensions. The questionnaire has some built-in systems to ensure data quality and participant attention across multiple
evaluation sessions. The platform sets out clear progress indicators to orientate the participants and maintain their attention. Also,
the platform requires fully completed ratings for all images in both dimensions before the participant can move on to the next
prompt set.

B Additional Analysis
In this section, we provide additional analysis results that are not included in the main content of the paper due to the page limit.



B.1 SD3.5 Large Turbo
Individual Subcomponent Removal Analysis: In additional to Figure 4, where we showed full-block removal and two types of
subcomponent removals, we include in Figure 8 three other types of subcomponents (d-f).
Joint Subcomponent Removal Analysis: To further understand the interdependencies between different MMDiT subcomponents,
we conducted an analysis examining the effect of jointly removing multiple subcomponents from SD3.5 Large Turbo. Figure 9
shows the performance degradation patterns when pairs of subcomponents are simultaneously removed from the model.

The results reveal distinct interaction patterns between different subcomponent combinations. Many of the paired subcomponent
removals exhibit significant performance degradation concentrated in the earlier blocks of the model, consistent with the critical
role of early processing stages in establishing semantic structures for image generation. However, a notable exception emerges
with the combination of Context Norm and Context MLP, which demonstrates remarkably minimal impact across the entire
network depth. This suggests that these two components may have complementary or redundant functions within the context
processing pathway, allowing the model to maintain performance when both are simultaneously removed.

The varied degradation patterns across different subcomponent pairs indicate that the MMDiT architecture contains both
critical interdependent components and potentially redundant pathways, providing insights for targeted pruning strategies that
preserve model quality while reducing computational overhead.

B.2 FLUX.1-Schnell
Individual Subcomponent Removal Analysis: We extended our analysis to FLUX.1-Schnell, which exhibits a unique two-stage
architecture design. The model consists of blocks 0-18 containing transformer blocks with five subcomponents, followed by
single transformer blocks with three subcomponents in the latter portion of the network.

Figure 10 presents the contribution analysis results for FLUX.1-Schnell. The architectural heterogeneity of this model provides
additional insights into the role of different subcomponents across varying block types. The transformer blocks (Figures 10a-10f)
show sensitivity patterns similar to those observed in SD3.5 Large Turbo, especially for Norm subcomponent, while the single
transformer blocks (Figures 10g-10h) shows that the performance degradation is largely small.
Joint Subcomponent Removal Analysis: The joint removal analysis for FLUX.1-Schnell reveals architecture-specific patterns
that differ markedly between the two block types. As shown in Figure 11, for transformer blocks, the results demonstrate
that removing components from earlier network portions leads to substantial quality degradation across all subcomponent
combinations. Particularly notable is the impact of removing all normalisation components, which negatively affects performance
throughout the network depth, with the exception of Norm + MLP and Context Norm + Context MLP combinations, which show
reduced impact.

In contrast, the single transformer blocks exhibit remarkable resilience to subcomponent removal, with minimal impacts
on final output quality. This robustness suggests that the single transformer blocks may contain significant redundancy or that
their simpler architecture naturally provides more fault tolerance. The differential sensitivity between block types reinforces
the hierarchical nature of the FLUX.1-Schnell architecture, where early complex processing is critical while later simplified
processing is more robust to subcomponent removal.

C Additional Results
We present additional results that are not included in the main content of the paper due page limit.

C.1 Computational Overhead Analysis
We investigate the computational overhead of using HierarchicalPrune. The overhead is primarily composed of two phases: (1)
the contribution analysis for establishing hierarchical importance patterns and (2) the subsequent distillation process.
Contribution Analysis Overhead: The contribution analysis phase represents the foundational step of our methodology,
systematically evaluating architectural components to establish hierarchical importance patterns. This analysis involves removing
individual blocks or subcomponents and measuring the resulting performance degradation. The computational requirements
varied across architectures:

• SD3.5 Large Turbo: Block-wise analysis required 6.3 hours (400 images per block). Fine-grained subcomponent analysis
took an additional 6.3 hours (80 images per subcomponent).

• FLUX.1-Schnell: Block-wise analysis required 14.9 hours (400 images per block) and fine-grained analysis took an additional
12.2 hours (80 images per subcomponent).

The contribution analysis takes around 12.6 A100 GPU hours for SD3.5 Large Turbo and 27.1 A100 GPU hours for FLUX.1-
Schnell. It systematically examines 38 blocks and 190 subcomponent combinations for SD3.5 Large Turbo, and 57 blocks with
multiple subcomponent configurations for FLUX.1-Schnell (e.g., 19 transformer blocks with 5 components each, plus 38 single
transformer blocks with 3 components each). The increased overhead for FLUX.1-Schnell is due to its higher inference cost and
architectural complexity.

Overall, the contribution analysis phase requires 12.6-27.1 GPU hours for comprehensive architectural profiling. While
substantial, this represents a one-time cost that is amortised across all deployments. Furthermore, training small-scale DMs



Model Method Memory (%) GenEval ⇑ HPSv2 ⇑ Reduction ⇓
Linear DiT SANA-Sprint (100%) 0.77 29.61 (± 0.071) -

Original (100%) 0.71 30.29 (± 0.074) -

KOALA (79.4%) 0.37 19.99 (± 0.074) 41.2%
KOALA (+Quant) (22.5%) 0.33 18.44 (± 0.075) 46.4%
BK-SDM (79.4%) 0.38 21.21 (± 0.077) 38.2%
BK-SDM (+Quant) (22.5%) 0.34 19.83 (± 0.079) 43.3%

SD3.5 Ours (HPP) (79.4%) 0.03 11.08 (± 0.042) 79.4%
Large Turbo Ours (+PWP) (79.4%) 0.71 28.97 (± 0.077) 2.5%

Ours (+Quant) (22.5%) 0.69 28.15 (± 0.078) 4.8%

Ours (HPP) (71.5%) 0.0 7.00 (± 0.041) 88.4%
Ours (+PWP) (71.5%) 0.46 21.74 (± 0.075) 31.9%
Ours (+SGDistill) (71.5%) 0.64 27.29 (± 0.079) 10.1%
Ours (+Quant, All) (20.5%) 0.62 26.29 (± 0.082) 13.3%

Original (100%) 0.66 29.71 (± 0.073) -

FLUX.1 KOALA (70.5%) 0.38 25.24 (± 0.075) 28.7%
Schnell BK-SDM (70.5%) 0.45 27.38 (± 0.074) 19.8%

Ours (All) (19.6%) 0.64 28.69 (± 0.079) 3.2%

Table 4: Full quantitative evaluation of image quality with mean and standard error. Note that the standard error is presented only
for HPSv2, as GenEval is the metric that reports the total number of correctly classified images with different attributes (standard
error is not applicable to the GenEval metric). KOALA and BK-SDM experience substantial degradation of image quality when
reducing memory usage by 20-30%. HierarchicalPrune achieves significantly reduced memory usage while maintaining the
image quality close to the original models.

(1-2B parameter-sized) from scratch requires 140,000 and/or 200,000 A100 GPU hours for smaller models such as SD1.4 and
SD2.1, respectively, as reported in (Pernias et al. 2024), let alone large-scale DMs (8-11B parameter-sized), which could require
significantly more GPU hours to train from scratch. Yet, our contribution analysis cost equals <0.006% of typical DM training.
Distillation Training Overhead: Following the contribution analysis, the distillation training process represents the most
computationally intensive component of our methodology, requiring approximately 603 A100 GPU hours for SD3.5 Large
Turbo and 1260 A100 GPU hours for FLUX.1-Schnell. The computational requirement reflects the complexity of preserving
image quality during aggressive compression, as our hierarchical distillation approach meticulously balances knowledge transfer
between original and compressed models while respecting the positional sensitivity patterns identified through contribution
analysis.
Overall Computational Requirement: When considered in its entirety, the contribution analysis phase requires 12.6-27.1 GPU
hours for comprehensive architectural profiling across different model architectures, and the subsequent distillation pipeline
demands 603-1260 A100 GPU hours. While substantial, these represent one-time costs that amortise across all subsequent
deployments. To place this computational investment in perspective, training small-scale DMs (1-2B parameters) from scratch
requires 140,000-200,000 A100 GPU hours for SD1.4 and SD2.1 models, respectively, as reported (Pernias et al. 2024), let alone
large-scale DMs (8-11B parameters), which would require considerably more computational resources. Notably, our contribution
analysis cost equals less than 0.006% of typical DM training overhead, while our distillation training process represents less than
0.30-0.63% of the computational cost required to train comparable models from scratch.

This perspective emphasises the efficiency of our compression approach: rather than training new compact models that could
sacrifice quality, HierarchicalPrune leverages existing high-quality models and transforms them into deployable versions through
targeted compression. Furthermore, as shown in Section 3, the reduced computational requirement of the compressed DMs
shows practical benefits, enabling 77.5-80.4% memory reduction and 27.9-38.0% latency improvements while preserving the
superior image quality that large-scale DMs provide. Overall, this cost-benefit strongly favours compression-based approaches
over training compact models from scratch, particularly when deployment accessibility and quality preservation are paramount
considerations.

C.2 Comprehensive Experimental Results
In this subsection, we provide the comprehensive experimental results.

Table 4 shows all the results presented in Section 3, aggregating main quantitative results and ablation study results, regarding
quantitative quality metrics such as GenEval and HPSv2. Note that we also present standard error to provide statistical evidence



A100 A6000 GTX 3090
Model Method Memory ⇓ Latency ⇓ Reduction ⇑ Latency ⇓ Reduction ⇑ Latency ⇓ Reduction ⇑
Linear DiT SANA-Sprint 3.14 GB 37±0.5 ms - 54±0.4 ms - 54±0.7 ms -

SD3.5
Large Turbo

Original 15.8 GB 444±0.4 ms - 823±0.7 ms 922±3.8 ms -
KOALA 11.3 GB 348±0.3 ms 21.6% 637±0.6 ms 22.6% 816±0.7 ms 11.5%
BK-SDM 11.3 GB 348±0.3 ms 21.6% 633±0.6 ms 23.1% 816±0.7 ms 11.5%
Ours (All) 3.24 GB 341±0.3 ms 23.2% 593±0.6 ms 27.9% 754±0.7 ms 18.2%

FLUX.1 Schnell

Original 22.6 GB 430±2.7 ms - 756±4.0 ms - 997±4.6 ms -
KOALA 15.9 GB 221±2.0 ms 48.6% 432±3.9 ms 42.9 % 562±4.4 ms 43.6%
BK-SDM 15.9 GB 221±2.0 ms 48.6% 432±3.9 ms 42.9 % 562±4.4 ms 43.6%
Ours (All) 4.44 GB 245±1.9 ms 43.0% 469±3.6 ms 38.0 % 562±4.4 ms 43.6%

Table 5: Comparison of the peak memory and mean and standard error of the per-step latency of the DM Transformer measured
on representative hardware from three tiers, i.e., NVIDIA A100 (80 GB VRAM), A6000 (48 GB VRAM) and GTX 3090 24 GB
(VRAM).

for robust performance evaluation. The standard error is presented only for HPSv2 as GenEval is the metric that reports the total
number of correctly classified images with different attributes, hence the standard error is not applicable to the GenEval metric.

In terms of computational resources, as shown in Tables 1, 2 and 5, our compression pipeline achieves 79.5% reduction in
peak memory for SD3.5 Large Turbo i.e., from 15.8 GB to just 3.24 GB, and 80.4% for FLUX.1.Schnell, i.e. from 22.6GB to
4.44GB.

For latency measurements, we used three testing environments as described in Appendix A, and we ran inference on the
HPSv2 dataset, using 400 prompts sampled equally from all four categories. We compare HierarchicalPrune with KOALA and
BK-SDM, each incorporated with SD3.5 Large Turbo and FLUX.1-Schnell model. We have also included SANA-Sprint-1.6B as
a strong baseline.

In Table 5, we report the mean and standard error of the per-step latency of the MMDiT inferences, as well as the reduction
compare to each base model. We observe that HierarchicalPrune constantly achieves the highest latency reduction for both base
models across representative hardware platforms for cloud (A100), high-end professional (A6000), and consumer-grade edge
(GTX3090) GPUs.

C.3 Additional Qualitative Image Results
In this subsection, we include image samples generated from HierarchicalPrune and baselines, to showcase the quality of outputs
(see Figures 12 and 13).

D Limitations & Societal Impacts
Technical Limitations: While HierarchicalPrune demonstrates impressive results, several considerations remain. First, our
approach requires initial profiling to identify hierarchical importance patterns. Yet, this is a one-time cost that gets amortised
when applying the pruning/distillation method repeatedly to DMs with similar architectures. Second, while we have validated our
dual-hierarchy insights across multiple MMDiT-based architectures (SD3.5 and FLUX), fundamentally different architectures
might exhibit different patterns requiring adaptation.
Broader Impact: By reducing hardware requirements, our work enables broader access to state-of-the-art generative tools for
researchers, artists, and educators with limited computing resources. Efficient inference aligns with sustainable AI practices,
potentially lowering the carbon footprint of large-scale generative tasks. However, automation of creative workflows may
impact industries reliant on human-generated art. We emphasise collaboration with policymakers to ensure equitable transitions.
Moreover, like any research in efficient foundation models, faster and cheaper generation could amplify harmful applications
(e.g., spam and deepfake). We advocate for strict ethical guidelines, developer accountability, educational campaigns to raise
awareness of generative AI’s capabilities and risks and tools like watermarking to trace AI-generated content.



Figure 7: The user study interface that describes the objectives, instructions, evaluation criteria, and example image samples.
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(a) Block Removal
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(b) Multi-modal Attention
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(c) MLP
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(d) Norm
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(e) Context Norm
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(f) Context MLP

Figure 8: Fine-grained contribution analysis of SD3.5 Large Turbo on the HPSv2 dataset by removing either an entire MMDiT
block or an intra-block subcomponent. We report the performance drop compared to the original model. (a) An entire MMDiT
block is removed following prior depth pruning approaches (Lee et al. 2024; Kim et al. 2024a; Fang et al. 2024). (b,c,d,e,f) Each
subcomponent of a MMDiT block is removed, revealing the different patterns of importance of each subcomponent.
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(a) Norm+MLP
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(b) MLP & Context MLP
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(c) Norm & Context Norm
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(d) Context Norm & Context MLP
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(e) Context Norm & All MLP
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(f) All Norm & All MLP

Figure 9: Fine-grained contribution analysis of SD3.5 Large Turbo on the HPSv2 dataset by jointly removing multiple subcom-
ponent types. The performance drop follows different patterns for different pairs, with most type combinations leading to high
performance degradation in earlier parts of the network, except for Context Norm + Context MLP (d), which has minimal impact.
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(b) Multi-modal Attention
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(c) MLP
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(e) Context Norm
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(f) Context MLP
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(g) (Single Transformer) Norm
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Figure 10: Fine-grained contribution analysis of FLUX.1-Schnell on the HPSv2 dataset by removing either an entire MMDiT
block or an intra-block subcomponent. We report the performance drop compared to the original model. (a) An entire MMDiT
block is removed following prior depth pruning approaches (Lee et al. 2024; Kim et al. 2024a; Fang et al. 2024). (b,c,d,e,f,g,h)
Each subcomponent of a MMDiT block is removed, revealing the different patterns of importance of each subcomponent. Note
that the first part of the model from block 0 to 18 is composed of the transformer blocks with five components (b-f) and the
second part of the model is made of single transformer blocks with three components (b,g,h).
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(a) Norm+MLP
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(b) Norm & Context Norm
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(c) Norm Context & Context MLP
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(d) (Single Transformer) Attn & MLP
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(e) (Single Transformer) Norm & Attn
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Figure 11: Fine-grained contribution analysis of FLUX.1-Schnell on the HPSv2 dataset by jointly removing multiple subcompo-
nent types. The performance drop follows different patterns for different pairs for the transformer blocks (a,b,c) and for the single
transformer blocks (e,d,f). For the transformer blocks (a,b,c), it shows that removing the earlier part of the network leads to huge
degradation of the quality for all the combinations of the subcomponents and removing all the norms (b) affects negatively across
all the portion of the network, except for Norm + MLP (a) and Context Norm + Context MLP (c), which has smaller impact. For
the single transformer blocks, removing subcomponents have minimal impacts on the final outputs as shown in (e,d,f).



Original Model Compression Methods Non-Compression
SD3.5 Large Turbo BK-SDM KOALA HierarchicalPrune (Ours) SANA-Sprint-1.6B

"A digital illustration of a beautiful and alluring American SWAT team in dramatic poses"

"Male character illustration by Gaston Bussiere.

"A close-up portrait of a beautiful girl with an autumn leaves headdress and melting wax."

"A smiling man is cooking in his kitchen."

Figure 12: Visual comparison demonstrating the quality difference between the original model (column 1), depth pruning based
on BK-SDM (column 2), KOALA (column 3), and our proposed HierarchicalPrune (column 4), as well as SOTA small-scale
diffusion model, SANA-Sprint-1.6B (column 5). Our approach successfully maintains visual quality while delivering 79.5%
memory reduction over the original model. Notably, our method preserves the text drawing capability of the original SD3.5
Large Turbo model where SANA-Sprint-1.6B is limited.



Figure 13: High-resolution image samples generated by our pruned/distilled model using our proposed method, Hierarchical-
Prune, showcasing its superior visual quality across various visual styles, precisely following text prompts, and preserving the
ability to draw typography.


